转载生信技能树 https://mp.weixin.qq.com/s/JB_329LCWqo5dY6MLawfEA
-
TCGA数据源
-
- R包RTCGA的简单介绍
-
- 首先安装及加载包
-
- 指定任意基因从任意癌症里面获取芯片表达数据
-
- 绘制指定基因在不同癌症的表达量区别boxplot
-
- 更多boxplot参数
-
- 指定任意基因从任意癌症里面获取测序表达数据
-
- 用全部的rnaseq的表达数据来做主成分分析
-
- 用5个基因在3个癌症的表达量做主成分分析
-
- 用突变数据做生存分析
-
- 多个基因在多种癌症的表达量热图
正文
TCGA数据源
众所周知,TCGA数据库是目前最综合全面的癌症病人相关组学数据库,包括的测序数据有:
-
DNA Sequencing
-
miRNA Sequencing
-
Protein Expression
-
mRNA Sequencing
-
Total RNA Sequencing
-
Array-based Expression
-
DNA Methylation
-
Copy Number
知名的肿瘤研究机构都有着自己的TCGA数据库探索工具,比如:
-
Broad Institute FireBrowse portal, The Broad Institute
-
cBioPortal for Cancer Genomics, Memorial Sloan-Kettering Cancer Center
-
TCGA Batch Effects, MD Anderson Cancer Center
-
Regulome Explorer, Institute for Systems Biology
-
Next-Generation Clustered Heat Maps, MD Anderson Cancer Center
R包RTCGA的简单介绍
而RTCGA这个包是 Marcin Marcin Kosinski et al. 等人开发的,工作流程如下:
img
这不是简单的一个包,而是一系列根据数据类型分离的包,相当于要先下载这些离线数据R包之后再直接从离线数据包里面获取TCGA的所有数据。
作者写了详细的文档: https://rtcga.github.io/RTCGA/index.html
最新的数据版本是2016-01-28,可以加载以下的包:
-
RTCGA.mutations.20160128
-
RTCGA.rnaseq.20160128
-
RTCGA.clinical.20160128
-
RTCGA.mRNA.20160128
-
RTCGA.miRNASeq.20160128
-
RTCGA.RPPA.20160128
-
RTCGA.CNV.20160128
-
RTCGA.methylation.20160128
旧版本已经可以考虑弃用了,下面是基于 2015-11-01 版本的 TCGA 数据
-
RTCGA.mutations
-
RTCGA.rnaseq
-
RTCGA.clinical
-
RTCGA.PANCAN12
-
RTCGA.mRNA
-
RTCGA.miRNASeq
-
RTCGA.RPPA
-
RTCGA.CNV
-
RTCGA.methylation
这里就介绍如何使用R语言的RTCGA包来获取任意TCGA数据吧。
首先安装及加载包
这里仅仅是测序mRNA表达量数据以及临床信息,所以只需要下载及安装下面的包:
# Load the bioconductor installer. source("https://bioconductor.org/biocLite.R") # Install the main RTCGA package biocLite("RTCGA") # Install the clinical and mRNA gene expression data packages biocLite("RTCGA.clinical") ## 14Mb biocLite('RTCGA.rnaseq') ## (612.6 MB) biocLite("RTCGA.mRNA") ## (85.0 MB) biocLite('RTCGA.mutations') ## (103.8 MB)
安装成功之后就可以加载,可以看到,有些数据包非常大,如果网速不好,下载会很可怕。也可以自己想办法独立下载。
https://bioconductor.org/packages/3.6/data/experiment/src/contrib/RTCGA.rnaseq_20151101.8.0.tar.gz https://bioconductor.org/packages/3.6/data/experiment/src/contrib/RTCGA.mRNA_1.6.0.tar.gz https://bioconductor.org/packages/3.6/data/experiment/src/contrib/RTCGA.clinical_20151101.8.0.tar.gz https://bioconductor.org/packages/3.6/data/experiment/src/contrib/RTCGA.mutations_20151101.8.0.tar.gz
library(RTCGA)
## Welcome to the RTCGA (version: 1.8.0).
all_TCGA_cancers=infoTCGA() DT::datatable(all_TCGA_cancers)
library(RTCGA.clinical) library(RTCGA.mRNA) ## ?mRNA ## ?clinical
指定任意基因从任意癌症里面获取芯片表达数据
这里我们拿下面3种癌症做示范:
-
Breast invasive carcinoma (BRCA)
-
Ovarian serous cystadenocarcinoma (OV)
-
Lung squamous cell carcinoma (LUSC)
library(RTCGA) library(RTCGA.mRNA) expr <- expressionsTCGA(BRCA.mRNA, OV.mRNA, LUSC.mRNA, extract.cols = c("GATA3", "PTEN", "XBP1","ESR1", "MUC1"))
## Warning in flatten_bindable(dots_values(...)): '.Random.seed' is not an ## integer vector but of type 'NULL', so ignored
expr
## # A tibble: 1,305 x 7 ## bcr_patient_barcode dataset GATA3 PTEN XBP1 #### 1 TCGA-A1-A0SD-01A-11R-A115-07 BRCA.mRNA 2.870500 1.3613571 2.983333 ## 2 TCGA-A1-A0SE-01A-11R-A084-07 BRCA.mRNA 2.166250 0.4283571 2.550833 ## 3 TCGA-A1-A0SH-01A-11R-A084-07 BRCA.mRNA 1.323500 1.3056429 3.020417 ## 4 TCGA-A1-A0SJ-01A-11R-A084-07 BRCA.mRNA 1.841625 0.8096429 3.131333 ## 5 TCGA-A1-A0SK-01A-12R-A084-07 BRCA.mRNA -6.025250 0.2508571 -1.451750 ## 6 TCGA-A1-A0SM-01A-11R-A084-07 BRCA.mRNA 1.804500 1.3107857 4.041083 ## 7 TCGA-A1-A0SO-01A-22R-A084-07 BRCA.mRNA -4.879250 -0.2369286 -0.724750 ## 8 TCGA-A1-A0SP-01A-11R-A084-07 BRCA.mRNA -3.143250 -1.2432143 -1.193083 ## 9 TCGA-A2-A04N-01A-11R-A115-07 BRCA.mRNA 2.034000 1.2074286 2.278833 ## 10 TCGA-A2-A04P-01A-31R-A034-07 BRCA.mRNA -0.293125 0.2883571 -1.605083 ## # ... with 1,295 more rows, and 2 more variables: ESR1 , MUC1
可以看到我们感兴趣的5个基因在这3种癌症的表达量数据都获取了,但是样本量并不一定是最新的TCGA样本量,如下:
nb_samples <- table(expr$dataset) nb_samples
## ## BRCA.mRNA LUSC.mRNA OV.mRNA ## 590 154 561
其中要注意的是mRNA并不是rnaseq,两者不太一样,具体样本数量,可以看最前面的表格。
下面简化一下标识,方便可视化展现
expr$dataset <- gsub(pattern = ".mRNA", replacement = "", expr$dataset) expr$bcr_patient_barcode <- paste0(expr$dataset, c(1:590, 1:561, 1:154)) expr
## # A tibble: 1,305 x 7 ## bcr_patient_barcode dataset GATA3 PTEN XBP1 ESR1 #### 1 BRCA1 BRCA 2.870500 1.3613571 2.983333 3.0842500 ## 2 BRCA2 BRCA 2.166250 0.4283571 2.550833 2.3860000 ## 3 BRCA3 BRCA 1.323500 1.3056429 3.020417 0.7912500 ## 4 BRCA4 BRCA 1.841625 0.8096429 3.131333 2.4954167 ## 5 BRCA5 BRCA -6.025250 0.2508571 -1.451750 -4.8606667 ## 6 BRCA6 BRCA 1.804500 1.3107857 4.041083 2.7970000 ## 7 BRCA7 BRCA -4.879250 -0.2369286 -0.724750 -4.4860833 ## 8 BRCA8 BRCA -3.143250 -1.2432143 -1.193083 -1.6274167 ## 9 BRCA9 BRCA 2.034000 1.2074286 2.278833 4.1155833 ## 10 BRCA10 BRCA -0.293125 0.2883571 -1.605083 0.4731667 ## # ... with 1,295 more rows, and 1 more variables: MUC1
绘制指定基因在不同癌症的表达量区别boxplot
library(ggpubr)
## Loading required package: ggplot2
## Loading required package: magrittr
# GATA3 ggboxplot(expr, x = "dataset", y = "GATA3", title = "GATA3", ylab = "Expression", color = "dataset", palette = "jco")
img
# PTEN ggboxplot(expr, x = "dataset", y = "PTEN", title = "PTEN", ylab = "Expression", color = "dataset", palette = "jco")
img
## 注意这个配色可以自选的: RColorBrewer::display.brewer.all()
这里选择的是 ggsci 包的配色方案,包括: “npg”, “aaas”, “lancet”, “jco”, “ucscgb”, “uchicago”, “simpsons” and “rickandmorty”,针对常见的SCI杂志的需求开发的。
还可以加上P值信息
my_comparisons <- list(c("BRCA", "OV"), c("OV", "LUSC")) ggboxplot(expr, x = "dataset", y = "GATA3", title = "GATA3", ylab = "Expression", color = "dataset", palette = "jco")+ stat_compare_means(comparisons = my_comparisons)
img
这些统计学检验,也是被包装成了函数:
compare_means(c(GATA3, PTEN, XBP1) ~ dataset, data = expr)
## # A tibble: 9 x 8 ## .y. group1 group2 p p.adj p.format p.signif #### 1 GATA3 BRCA OV 1.111768e-177 3.335304e-177 < 2e-16 **** ## 2 GATA3 BRCA LUSC 6.684016e-73 1.336803e-72 < 2e-16 **** ## 3 GATA3 OV LUSC 2.965702e-08 2.965702e-08 3.0e-08 **** ## 4 PTEN BRCA OV 6.791940e-05 6.791940e-05 6.8e-05 **** ## 5 PTEN BRCA LUSC 1.042830e-16 3.128489e-16 < 2e-16 **** ## 6 PTEN OV LUSC 1.280576e-07 2.561153e-07 1.3e-07 **** ## 7 XBP1 BRCA OV 2.551228e-123 7.653685e-123 < 2e-16 **** ## 8 XBP1 BRCA LUSC 1.950162e-42 3.900324e-42 < 2e-16 **** ## 9 XBP1 OV LUSC 4.239570e-11 4.239570e-11 4.2e-11 **** ## # ... with 1 more variables: method
更多boxplot参数
label.select.criteria <- list(criteria = "`y` > 3.9 & `x` %in% c('BRCA', 'OV')") ggboxplot(expr, x = "dataset", y = c("GATA3", "PTEN", "XBP1"), combine = TRUE, color = "dataset", palette = "jco", ylab = "Expression", label = "bcr_patient_barcode", # column containing point labels label.select = label.select.criteria, # Select some labels to display font.label = list(size = 9, face = "italic"), # label font repel = TRUE # Avoid label text overplotting )
img
其中 combine = TRUE
会把多个boxplot并排画在一起,其实没有ggplot自带的分面好用。
还可以使用 merge = TRUE or merge = “asis” or merge = "flip"
来把多个boxplot 合并,效果不一样。
还有翻转,如下:
ggboxplot(expr, x = "dataset", y = "GATA3", title = "GATA3", ylab = "Expression", color = "dataset", palette = "jco", rotate = TRUE)
img
更多可视化详见: http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/77-facilitating-exploratory-data-visualization-application-to-tcga-genomic-data/
指定任意基因从任意癌症里面获取测序表达数据
还是同样的3种癌症和5个基因做示范,这个时候的基因ID稍微有点麻烦,不仅仅是要symbol还要entrez的ID,具体需要看 https://wiki.nci.nih.gov/display/TCGA/RNASeq+Version+2 的解释
如下:
library(RTCGA) library(RTCGA.rnaseq) expr <- expressionsTCGA(BRCA.rnaseq, OV.rnaseq, LUSC.rnaseq, extract.cols = c("GATA3|2625", "PTEN|5728", "XBP1|7494","ESR1|2099", "MUC1|4582")) expr
## # A tibble: 2,071 x 7 ## bcr_patient_barcode dataset `GATA3|2625` `PTEN|5728` #### 1 TCGA-3C-AAAU-01A-11R-A41B-07 BRCA.rnaseq 14337.4623 1724.328 ## 2 TCGA-3C-AALI-01A-11R-A41B-07 BRCA.rnaseq 7437.7379 1106.580 ## 3 TCGA-3C-AALJ-01A-31R-A41B-07 BRCA.rnaseq 10252.9465 1478.695 ## 4 TCGA-3C-AALK-01A-11R-A41B-07 BRCA.rnaseq 8761.6880 1877.120 ## 5 TCGA-4H-AAAK-01A-12R-A41B-07 BRCA.rnaseq 14068.5106 1739.574 ## 6 TCGA-5L-AAT0-01A-12R-A41B-07 BRCA.rnaseq 16511.5120 1596.715 ## 7 TCGA-5L-AAT1-01A-12R-A41B-07 BRCA.rnaseq 6721.2714 1374.083 ## 8 TCGA-5T-A9QA-01A-11R-A41B-07 BRCA.rnaseq 13485.3556 2181.485 ## 9 TCGA-A1-A0SB-01A-11R-A144-07 BRCA.rnaseq 601.4191 2529.114 ## 10 TCGA-A1-A0SD-01A-11R-A115-07 BRCA.rnaseq 12982.8798 1875.775 ## # ... with 2,061 more rows, and 3 more variables: `XBP1|7494` , ## # `ESR1|2099` , `MUC1|4582`
nb_samples <- table(expr$dataset) nb_samples
## ## BRCA.rnaseq LUSC.rnaseq OV.rnaseq ## 1212 552 307
library(ggpubr) # ESR1|2099 ggboxplot(expr, x = "dataset", y = "`PTEN|5728`", title = "ESR1|2099", ylab = "Expression", color = "dataset", palette = "jco")
img
更多可视化见:http://rtcga.github.io/RTCGA/articles/Visualizations.html
用全部的rnaseq的表达数据来做主成分分析
## RNASeq expressions library(RTCGA.rnaseq) library(dplyr)
## ## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats': ## ## filter, lag
## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union
expressionsTCGA(BRCA.rnaseq, OV.rnaseq, HNSC.rnaseq) %>% dplyr::rename(cohort = dataset) %>% filter(substr(bcr_patient_barcode, 14, 15) == "01") -> BRCA.OV.HNSC.rnaseq.cancer pcaTCGA(BRCA.OV.HNSC.rnaseq.cancer, "cohort") -> pca_plot plot(pca_plot)
img
因为是全部的表达数据,所以非常耗时,但是可以很明显看到乳腺癌和卵巢癌关系要近一点,头颈癌症就要远一点。
用5个基因在3个癌症的表达量做主成分分析
expr %>% filter(substr(bcr_patient_barcode, 14, 15) == "01") -> rnaseq.5genes.3cancers DT::datatable(rnaseq.5genes.3cancers)
#pcaTCGA(rnaseq.5genes.3cancers, "dataset") -> pca_plot #plot(pca_plot)
该包里面的pcaTCGA函数不好用,其实可以自己做PCA分析。
用突变数据做生存分析
library(RTCGA.mutations) # library(dplyr) if did not load at start library(survminer) mutationsTCGA(BRCA.mutations, OV.mutations) %>% filter(Hugo_Symbol == 'TP53') %>% filter(substr(bcr_patient_barcode, 14, 15) == "01") %>% # cancer tissue mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) -> BRCA_OV.mutations library(RTCGA.clinical) survivalTCGA( BRCA.clinical, OV.clinical, extract.cols = "admin.disease_code" ) %>% dplyr::rename(disease = admin.disease_code) -> BRCA_OV.clinical BRCA_OV.clinical %>% left_join( BRCA_OV.mutations, by = "bcr_patient_barcode" ) %>% mutate(TP53 = ifelse(!is.na(Variant_Classification), "Mut","WILDorNOINFO")) -> BRCA_OV.clinical_mutations BRCA_OV.clinical_mutations %>% select(times, patient.vital_status, disease, TP53) -> BRCA_OV.2plot kmTCGA( BRCA_OV.2plot, explanatory.names = c("TP53", "disease"), break.time.by = 400, xlim = c(0,2000), pval = TRUE) -> km_plot
## Scale for 'colour' is already present. Adding another scale for ## 'colour', which will replace the existing scale.
## Scale for 'fill' is already present. Adding another scale for 'fill', ## which will replace the existing scale.
print(km_plot)
img
多个基因在多种癌症的表达量热图
library(RTCGA.rnaseq) # perfrom plot # library(dplyr) if did not load at start expressionsTCGA( ACC.rnaseq, BLCA.rnaseq, BRCA.rnaseq, OV.rnaseq, extract.cols = c("MET|4233", "ZNF500|26048", "ZNF501|115560") ) %>% dplyr::rename(cohort = dataset, MET = `MET|4233`) %>% #cancer samples filter(substr(bcr_patient_barcode, 14, 15) == "01") %>% mutate(MET = cut(MET, round(quantile(MET, probs = seq(0,1,0.25)), -2), include.lowest = TRUE, dig.lab = 5)) -> ACC_BLCA_BRCA_OV.rnaseq ACC_BLCA_BRCA_OV.rnaseq %>% select(-bcr_patient_barcode) %>% group_by(cohort, MET) %>% summarise_each(funs(median)) %>% mutate(ZNF500 = round(`ZNF500|26048`), ZNF501 = round(`ZNF501|115560`)) -> ACC_BLCA_BRCA_OV.rnaseq.medians
## `summarise_each()` is deprecated. ## Use `summarise_all()`, `summarise_at()` or `summarise_if()` instead. ## To map `funs` over all variables, use `summarise_all()`
heatmapTCGA(ACC_BLCA_BRCA_OV.rnaseq.medians, "cohort", "MET", "ZNF500", title = "Heatmap of ZNF500 expression")